A Giải hệ phương trình: Arrayl3x - 2y = 5\2x + y = — Không quảng cáo

Giải hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 5\\2x + y = 1\end{array} \right \) b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương


Đề bài

a) Giải hệ phương trình: \(\left\{ \begin{array}{l}3x - 2y = 5\\2x + y = 1\end{array} \right.\).

b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 công cụ. Nhờ sắp xếp hợp lý dấy chuyền sản xuất nên xí nghiệp I đã vượt mức 12% kế hoạch, xí nghiệp II đã vượt mức 10% kế hoạch. Do đó cả xí nghiệp đã làm được 400 công cụ. Tính số công cụ mỗi xí nghiệp phải làm theo kế hoạch.

Phương pháp giải

a) Sử dụng phương pháp cộng đại số để giải hệ phương trình.

b) - Đặt ẩn và đặt điều kiện cho ẩn, lập hai phương trình biểu diễn mối quan hệ giữa các ẩn, đưa về bài toán giải hệ phương trình bậc nhất hai ẩn.

- Giải hệ phương trình tìm được ẩn, sau đó kiểm tra điều kiện và chọn giá trị thỏa mãn.

a) Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}3x - 2y = 5\\2x + y = 1\end{array} \right.\\\left\{ \begin{array}{l}3x - 2y = 5\\4x + 2y = 2\end{array} \right.\\\left\{ \begin{array}{l}7x = 7\\2x + y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = 1\\2.1 + y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = 1\\y =  - 1\end{array} \right.\end{array}\)

Vậy hệ phương trình có nghiệm là \(\left( {x;y} \right) = \left( {1; - 1} \right)\).

b) Gọi số dụng cụ mà xí nghiệp 1 và xí nghiệp II phải làm lần lượt là \(x,y\) \(\left( {x,y \in {N^*}} \right)\).

Theo kế hoạch, hai xí nghiệp sản xuất phải làm tổng cộng 360 dụng cụ nên ta có:

\(x + y = 360\) (1)

Thực tế, xí nghiệp I đã vượt mức 12% kế hoạch, xí nghiệp II đã vượt mức 10% kế hoạch, do đó hai xí nghiệp đã làm được 400 dụng cụ nên ta có phương trình:

\(\left( {x + 12\% x} \right) + \left( {y + 10\% y} \right) = 400\) hay \(1,12x + 1,1y = 400\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 360\\1,12x + 1,1y = 400\end{array} \right.\).

Giải hệ phương trình ta được: \(\left\{ \begin{array}{l}x = 200\\y = 160\end{array} \right.\left( {TM} \right)\).

Vậy theo kế hoạch xí nghiệp I làm được 200 dụng cụ và xí nghiệp II làm được 160 dụng cụ.