a) Tìm x, y biết: \({x^2} - 2xy + 2x + 2{y^2} - 4y + 2 = 0\).
b) Trong buổi sinh hoạt câu lạc bộ Toán, thầy giáo đưa ra câu hỏi: “Trong các hình chữ nhật có diện tích không đổi bằng \(100{m^2}\) thì hình nào có chu vi nhỏ nhất?”.
Bạn Nam trả lời: “Đó là hình vuông ạ”.
Theo em, bạn Nam trả lời đúng hay sai? Em hãy giải thích và tìm giá trị nhỏ nhất đó.
a) Sử dụng hằng đẳng thức bình phương của một tổng: \({a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\) và bình phương của một hiệu: \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\) để biến đổi về dạng \({A^2} + {B^2} + c\).
Khi đó giá trị nhỏ nhất là c (với c là hằng số).
b) Gọi x, y (m) là các kích thước của hình chữ nhật.
Biểu diễn diện tích theo x, y.
Từ đó biểu diễn chu vi theo x, y để kiểm tra câu trả lời của bạn Nam.
a) \({x^2} - 2xy + 2x + 2{y^2} - 4y + 2 = 0\)
\(\begin{array}{l}{x^2} - 2xy + {y^2} + 2x - 2y + 1 + {y^2} - 2y + 1 = 0\\{\left( {x - y} \right)^2} + 2\left( {x - y} \right) + 1 + {\left( {y - 1} \right)^2} = 0\\{\left( {x - y + 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\end{array}\)
Vì \({\left( {x - y + 1} \right)^2} \ge 0\) và \({\left( {y - 1} \right)^2} \ge 0\) với mọi x, y nên \({\left( {x - y + 1} \right)^2} + {\left( {y - 1} \right)^2} = 0\) khi \(x - y + 1 = 0\) và \(y - 1 = 0\).
+) \(y - 1 = 0\) suy ra \(y = 1\)
+) \(x - y + 1 = 0\) hay \(x - 1 + 1 = 0\) suy ra \(x = 0\).
Vậy \(x = 0\) và \(y = 1\).
b) Gọi x, y (m) là các kích thước của hình chữ nhật. \(\left( {x;y > 0} \right)\)
Vì hình chữ nhật có diện tích không đổi bằng \(100{m^2}\) nên ta có \(xy = 100\left( {{m^2}} \right)\).
Ta có: \({\left( {x - y} \right)^2} \ge 0\)
Suy ra \({x^2} - 2xy + {y^2} \ge 0\)
\({x^2} + 2xy + {y^2} - 4xy \ge 0\)
\({\left( {x + y} \right)^2} \ge 4xy = 4.100 = 400\)
Suy ra \(x + y \ge \sqrt {400} = 20\).
Do đó chu vi hình chữ nhật là \(C = 2\left( {x + y} \right) \ge 2.20 = 40\left( m \right)\)
Dấu bằng xảy ra khi \(x = y = 10\) khi đó hình chữ nhật là hình vuông.
Vậy bạn Nam trả lời đúng.
Khi đó chu vi nhỏ nhất là 40m.