Đề bài
Biết rằng \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = 11\). Hỏi m thuộc khoảng nào trong các khoảng sau?
-
A.
\(\left( {12;18} \right)\)
-
B.
\(\left( {9;12} \right)\)
-
C.
\(\left( {5;8} \right)\)
-
D.
\(\left( {8;10} \right)\)
Phương pháp giải
Tính \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right)\) theo m
\(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = {2^2} - 2.2 + m + 1 = m + 1\)
Ta có: \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = 11\) nên \(m + 1 = 11 \Leftrightarrow m = 10\)
Đáp án B.
Đáp án : B