Biểu thức 4x^2 - 4x + 1 được viết dưới dạng hằng đẳng thức — Không quảng cáo

Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là


Đề bài

Biểu thức \(4{x^2} - 4x + 1\)  được viết dưới dạng hằng đẳng thức bình phương của một hiệu là

  • A.
    \({\left( {2x - 1} \right)^2}\) .
  • B.
    \({\left( {2x + 1} \right)^2}\) .
  • C.
    \({\left( {4x - 1} \right)^2}\) .
  • D.
    \(\left( {2x - 1} \right)\left( {2x + 1} \right)\) .
Phương pháp giải
Áp dụng hằng đẳng thức bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
\(4{x^2} - 4x + 1 = {\left( {2x} \right)^2} - 2.2x.1 + {1^2} = {\left( {2x - 1} \right)^2}\)

Đáp án : A