Cho 1/1 - X + 1/1 + x + 2/1 + x^2 + 4/1 + x^4 + 8/1 + x^8 — Không quảng cáo

Cho \(\frac{1}{{1 - X}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{ }}{{1 - {x^{16}}}}\) Số thích hợp điền vào


Đề bài

Cho \(\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{...}}{{1 - {x^{16}}}}\). Số thích hợp điền vào chỗ trống là?

  • A.
    16
  • B.
    8
  • C.
    4
  • D.
    20
Phương pháp giải

Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\(\begin{array}{l}\frac{1}{{1 - x}} + \frac{1}{{1 + x}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{1 + x + 1 - x}}{{\left( {1 - x} \right)\left( {1 + x} \right)}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{2}{{1 - {x^2}}} + \frac{2}{{1 + {x^2}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{2\left( {1 + {x^2}} \right) + 2\left( {1 - {x^2}} \right)}}{{\left( {1 - {x^2}} \right)\left( {1 + {x^2}} \right)}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}}\\ = \frac{4}{{1 - {x^4}}} + \frac{4}{{1 + {x^4}}} + \frac{8}{{1 + {x^8}}} = \frac{{4\left( {1 + {x^4}} \right) + 4\left( {1 - {x^4}} \right)}}{{\left( {1 - {x^4}} \right)\left( {1 + {x^4}} \right)}} + \frac{8}{{1 + {x^8}}}\\ = \frac{8}{{1 - {x^8}}} + \frac{8}{{1 + {x^8}}} = \frac{{8\left( {1 + {x^8}} \right) + 8\left( {1 - {x^8}} \right)}}{{\left( {1 - {x^8}} \right)\left( {1 + {x^8}} \right)}} = \frac{{16}}{{1 - {x^{16}}}}\end{array}\)

Đáp án : A