Cho 3x^2 + 6x - 18^2 - 3x^2 + 6x^2 = mx + nx - 1. Khi đó — Không quảng cáo

Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\) Khi đó \(\frac{m}{n}\) bằng


Đề bài

Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

  • A.
    \(\frac{m}{n} = 36\).
  • B.
    \(\frac{m}{n} =  - 36\).
  • C.
    \(\frac{m}{n} = 18\).
  • D.
    \(\frac{m}{n} =  - 18\).
Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.
Ta có:

\(\begin{array}{l}{(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2}\\ = (3{x^2} + 6x - 18 - 3{x^2} - 6x)(3{x^2} + 6x - 18 + 3{x^2} + 6x)\\ =  - 18(6{x^2} + 12x - 18)\\ =  - 18.6({x^2} + 2x - 3)\\ =  - 108({x^2} + 2x - 3)\\ =  - 108({x^2} - x + 3x - 3)\\ =  - 108\left[ {x(x - 1) + 3(x - 1)} \right]\\ =  - 108(x + 3)(x - 1)\end{array}\)

Khi đó, m = -108; n = 3 \( \Rightarrow \frac{m}{n} = \frac{{ - 108}}{3} =  - 36\)

Đáp án : B