Cho \(A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\). Khi đó
-
A.
A chia hết cho 12 và 5.
-
B.
A không chia hết cho cả 12 và 5.
-
C.
A chia hết cho 12 nhưng không chia hết cho 5.
-
D.
A chia hết cho 5 nhưng không chia hết cho 12.
\(\begin{array}{l}A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\\ = ({1^3} + {11^3}) + ({3^3} + {9^3}) + ({5^3} + {7^3})\\ = (1 + 11)({1^2} - 11 + {11^2}) + (3 + 9)({3^2} - 3.9 + {9^2}) + (5 + 7)({5^2} - 5.7 + {7^2})\\ = 12({1^2} - 11 + {11^2}) + 12({3^2} - 3.9 + {9^2}) + 12({5^2} - 5.7 + {7^2})\end{array}\)
Vì mỗi số hạng trong tổng đều chia hết cho 12 nên \(A \vdots 12\).
\(\begin{array}{l}A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\\ = ({1^3} + {9^3}) + ({3^3} + {7^3}) + {5^3} + {11^3}\\ = (1 + 9)({1^2} - 9 + {9^2}) + (3 + 7)({3^2} - 3.7 + {7^2}) + {5^3} + {11^3}\\ = 10({1^2} - 9 + {9^2}) + 10({3^2} - 3.7 + {7^2}) + {5^3} + {11^3}\end{array}\)
Ta có:
\(10 \vdots 5\)\( \Rightarrow 10({1^2} - 9 + {9^2}) \vdots 5\); \(10({3^2} - 3.7 + {7^2}) \vdots 5\)
\({5^3} \vdots 5\).
Mà \({11^3}\) không chia hết cho 5 nên A không chia hết cho 5.
Đáp án : C