Cho A = 2x - 1/6x^2 - 6x - 3/4x^2 - 4. Phân thức thu gọn — Không quảng cáo

Cho \(A = \frac{{2x - 1}}{{6{x^2} - 6x}} - \frac{3}{{4{x^2} - 4}}\) Phân thức thu gọn của \(A\) có tử thức là


Đề bài

Cho \(A = \frac{{2x - 1}}{{6{x^2} - 6x}} - \frac{3}{{4{x^2} - 4}}\). Phân thức thu gọn của \(A\) có tử thức là:

  • A.
    \(\frac{{4{x^2} - 7x - 2}}{{12x\left( {x - 1} \right)\left( {x + 1} \right)}}\)
  • B.
    \(4{x^2} - 7x + 2\)
  • C.
    \(4{x^2} - 7x - 2\)
  • D.
    \(12x\left( {x - 1} \right)\left( {x + 1} \right)\)
Phương pháp giải

Muốn trừ hai phân thức khác mẫu, ta quy đồng mẫu thức rồi trừ hai phân thức có cùng mẫu thức vừa tìm được

\(A = \frac{{2x - 1}}{{6{x^2} - 6x}} - \frac{3}{{4{x^2} - 4}} = \frac{{2x - 1}}{{6x\left( {x - 1} \right)}} - \frac{3}{{4\left( {{x^2} - 1} \right)}}\)

\( = \frac{{2x - 1}}{{6x\left( {x - 1} \right)}} - \frac{3}{{4\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{2\left( {2x - 1} \right)\left( {x + 1} \right) - 3.3x}}{{12x\left( {x - 1} \right)\left( {x + 1} \right)}}\)

\( = \frac{{\left( {4x - 2} \right)\left( {x + 1} \right) - 9x}}{{12x\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{4{x^2} + 4x - 2x - 2 - 9x}}{{12\left( {x - 1} \right)\left( {x + 1} \right)}}\)

\( = \frac{{4{x^2} - 7x - 2}}{{12\left( {x - 1} \right)\left( {x + 1} \right)}}\)

Đáp án C.

Đáp án : C