Cho A = 4x^2y - 5 và B = 3x^3y + 6x^2y^2 + 3xy^2. So sánh A — Không quảng cáo

Cho \(A = 4{x^2}y - 5\) và \(B = 3{x^3}y + 6{x^2}{y^2} + 3x{y^2}\) So sánh \(A\) và \(B\) khi \(x = - 1 \,y = 3\)


Đề bài

Cho \(A = 4{x^2}y - 5\) và \(B = 3{x^3}y + 6{x^2}{y^2} + 3x{y^2}\). So sánh \(A\) và \(B\) khi \(x =  - 1;\,y = 3\)

  • A.

    \(A > B\)

  • B.

    \(A = B\)

  • C.

    \(A < B\)

  • D.

    \(A \ge B\)

Phương pháp giải

+ Thay \(x =  - 1;\,y = 3\) vào biểu thức \(A\)  để tìm giá trị của biểu thức \(A.\)

+ Thay \(x =  - 1;\,y = 3\) vào biểu thức \(B\)  để tìm giá trị của biểu thức \(B\)

+ So sánh kết quả vừa tính được của \(A\) và \(B.\)

+ Thay \(x =  - 1;\,y = 3\) vào biểu thức \(A\)  ta được \(A = 4.{\left( { - 1} \right)^2}.3 - 5 = 7\)

+ Thay \(x =  - 1;\,y = 3\) vào biểu thức \(B\) ta được \(B = 3.{\left( { - 1} \right)^3}.3 + 6.{\left( { - 1} \right)^2}{.3^2} + 3.\left( { - 1} \right){.3^2}\) \( =  - 9 + 54 - 27 = 18.\)

Vậy\(A < B\) khi \(x =  - 1;\,y = 3.\)

Đáp án : C