Cho a + b + c = 0. Tính A = 4bc - A^2/bc + 2a^2 cdot 4ca — Không quảng cáo

Cho \(a + b + c = 0\) Tính \(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}}\)


Đề bài

Cho \(a + b + c = 0\). Tính \(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}}\).

  • A.
    1
  • B.
    0
  • C.
    -1
  • D.
    2
Phương pháp giải

Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

Do \(a + b + c = 0 \Rightarrow a =  - \left( {b + c} \right)\)

\(\begin{array}{l}4bc - {a^2} = 4bc - {\left[ { - \left( {b + c} \right)} \right]^2} = 4bc - \left( {{b^2} + 2bc + {c^2}} \right) = 2bc - {b^2} - {c^2} =  - {\left( {b - c} \right)^2}\\bc + 2{a^2} = {a^2} + bc + {a^2} = {a^2} + bc + a\left[ { - \left( {b + c} \right)} \right] = {a^2} + bc - ab - ac\\ = \left( {{a^2} - ab} \right) - \left( {ac - bc} \right) = a\left( {a - b} \right) - c\left( {a - b} \right) = \left( {a - c} \right)\left( {a - b} \right)\\ \Rightarrow \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} = \frac{{ - {{\left( {b - c} \right)}^2}}}{{\left( {a - c} \right)\left( {a - b} \right)}}\end{array}\)

Tương tự, ta có: \(\frac{{4ca - {b^2}}}{{ca + 2{b^2}}} = \frac{{ - {{\left( {c - a} \right)}^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}};\,\frac{{4ab - {c^2}}}{{ab + 2{c^2}}} = \frac{{ - {{\left( {a - b} \right)}^2}}}{{\left( {c - a} \right)\left( {c - b} \right)}}\)

\(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}} = \frac{{ - {{\left( {b - c} \right)}^2}}}{{\left( {a - c} \right)\left( {a - b} \right)}} \cdot \frac{{ - {{\left( {c - a} \right)}^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}} \cdot \frac{{ - {{\left( {a - b} \right)}^2}}}{{\left( {c - a} \right)\left( {c - b} \right)}} = 1\)

Đáp án : A