Cho a,b,m và n thỏa mãn các đẳng thức: A + b = m và a - B = — Không quảng cáo

Cho \(a,b,m\) và \(n\) thỏa mãn các đẳng thức \(a + b = m\) và \(a - B = n\) Giá trị của biểu thức \(A = {a^3} + {b^3}\)


Đề bài

Cho \(a,b,m\) và \(n\) thỏa mãn các đẳng thức: \(a + b = m\) và \(a - b = n\). Giá trị của biểu thức \(A = {a^3} + {b^3}\) theo m và n.

  • A.
    \(A = \frac{{{m^3}}}{4}\).
  • B.
    \(A = \frac{1}{4}m(5{n^2} + {m^2})\).
  • C.
    \(A = \frac{1}{4}m(3{n^2} + {m^2})\).
  • D.
    \(A = \frac{1}{4}m(3{n^2} - {m^2})\).
Phương pháp giải
Áp dụng hằng đẳng thức: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\)
Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}a + b = m\\a - b = n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{m + n}}{2}\\b = \frac{{m - n}}{2}\end{array} \right.\\ \Rightarrow ab = \frac{{(m + n)(m - n)}}{{2.2}} = \frac{{{m^2} - {n^2}}}{4}\end{array}\)

Biến đổi biểu thức A, ta được:

\(\begin{array}{l}A = {a^3} + {b^3}\\ = (a + b)({a^2} - ab + {b^2})\\ = (a + b)\left[ {({a^2} - 2ab + {b^2}) + ab} \right]\\ = (a + b)\left[ {{{\left( {a - b} \right)}^2} + ab} \right]\end{array}\)

Thay \(a + b = m;a - b = n,ab = \frac{{{m^2} - {n^2}}}{4}\) vào A, ta có:

\(\begin{array}{l}A = m\left( {{n^2} + \frac{{{m^2} - {n^2}}}{4}} \right)\\ = \frac{{4m{n^2}}}{4} + \frac{{{m^3}}}{4} - \frac{{m{n^2}}}{4}\\ = \frac{{3m{n^2}}}{4} + \frac{{{m^3}}}{4}\\ = \frac{1}{4}m\left( {3{n^2} + {m^2}} \right)\end{array}\)

Đáp án : C