Cho a và ba số b, c, d khác a thỏa mãn điều kiện \(b + d = 2c.\) Số nghiệm của phương trình \(\frac{x}{{\left( {a - b} \right)\left( {a - c} \right)}} - \frac{{2x}}{{\left( {a - b} \right)\left( {a - d} \right)}} + \frac{{3x}}{{\left( {a - c} \right)\left( {a - d} \right)}} = \frac{{4a}}{{\left( {a - c} \right)\left( {a - d} \right)}}\) là:
-
A.
0 nghiệm
-
B.
1 nghiệm
-
C.
2 nghiệm
-
D.
Vô số nghiệm
\(\frac{x}{{\left( {a - b} \right)\left( {a - c} \right)}} - \frac{{2x}}{{\left( {a - b} \right)\left( {a - d} \right)}} + \frac{{3x}}{{\left( {a - c} \right)\left( {a - d} \right)}} = \frac{{4a}}{{\left( {a - c} \right)\left( {a - d} \right)}}\)
\(\frac{{x\left( {a - d} \right) - 2x\left( {a - c} \right) + 3x\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}} = \frac{{4a\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}}\)
\(x\left( {a - d - 2a + 2c + 3a - 3b} \right) = 4a\left( {a - b} \right)\)
\(x\left( {2a - 3b + 2c - d} \right) = 4a\left( {a - b} \right)\;\left( 1 \right)\)
Từ giả thiết, \(b + d = 2c\) nên \(2a - 3b + 2c - d = 2a - 2b = 2\left( {a - b} \right)\) thay vào (1) ta có:
\(2\left( {a - b} \right)x = 4a\left( {a - b} \right)\;\left( 2 \right)\)
Vì \(a - b \ne 0\) nên phương trình (2) có nghiệm duy nhất là \(x = 2a.\)
Vậy phương trình đã cho có một nghiệm.
Đáp án : B