Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.
Khẳng định nào sau đây chưa đúng?
(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
-
A.
\(\left( {a + b} \right) \vdots m\)
-
B.
\(\left( {a - b} \right) \vdots m\)
-
C.
\(\left( {a + b + c} \right) \vdots m\)
-
D.
\(\left( {b + c} \right) \vdots m\)
Tính chất 1 : Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.
\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a + b} \right) \vdots m\)
\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a - b} \right) \vdots m\) với \(\left( {a \ge b} \right)\)
\(a \vdots m;b \vdots m;c \vdots m \Rightarrow \left( {a + b + c} \right) \vdots m\)
\(\left( {a - b} \right) \vdots m\) sai vì thiếu điều kiện \(a \ge b\)
Đáp án : B