Cho arraylf x = x^2n - X^2n - 1 +. . . . + x^2 - X + 1\g x = — Không quảng cáo

Cho \(\begin{array}{l}f\left( x \right) = {x^{2n}} - {x^{2n - 1}} + + {x^2} - X + 1\\g\left( x \right) = - {x^{2n + 1}} + {x^{2n}} - {x^{2n - 1}}


Đề bài

Cho

\(\begin{array}{l}f\left( x \right) = {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1\\g\left( x \right) =  - {x^{2n + 1}} + {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1\end{array}\)

Biết \(h\left( x \right) = f\left( x \right) - g\left( x \right)\). Tính \(h\left( {\frac{1}{{10}}} \right)\)

  • A.
    \(h\left( {\frac{1}{{10}}} \right) = \frac{{ - 1}}{{{{10}^{2n + 1}}}}\)
  • B.
    \(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n + 1}}}}\)
  • C.
    \(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n - 1}}}}\)
  • D.
    \(h\left( {\frac{1}{{10}}} \right) = \frac{1}{{{{10}^{2n - 1}}}}\)
Phương pháp giải
Tính h(x) = f(x) – g(x)

Thay \(x = \frac{1}{{10}}\)vào h(x)

Ta có:

\(\begin{array}{l}h\left( x \right) = f\left( x \right) - g\left( x \right)\\ = \left( {{x^{2n}} - {x^{2n - 1}} + ..... + {x^2} - x + 1} \right) - \left( { - {x^{2n + 1}} + {x^{2n}} - {x^{2n - 1}} + .... + {x^2} - x + 1} \right)\\ = {x^{2n}} - {x^{2n - 1}} + ..... + {x^2} - x + 1 + {x^{2n + 1}} - {x^{2n}} + {x^{2n + 1}} - .... - {x^2} + x - 1\\ = {x^{2n + 1}} + \left( {{x^{2n}} - {x^{2n}}} \right) + \left( { - {x^{2n - 1}} + {x^{2n - 1}}} \right) + .... + \left( {{x^2} - {x^2}} \right) + \left( { - x + x} \right) + \left( {1 - 1} \right)\\ = {x^{2n + 1}}\end{array}\)

Thay \(x = \frac{1}{{10}}\)vào h(x) ta được:

\(h\left( {\frac{1}{{10}}} \right) = {\left( {\frac{1}{{10}}} \right)^{2n + 1}} = \frac{1}{{{{10}^{2n + 1}}}}\)

Đáp án : B