Cho ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Xét các vecto \(\overrightarrow x = 2\overrightarrow a - \overrightarrow b \); \(\overrightarrow y = - 4\overrightarrow a + 2\overrightarrow b \); \(\overrightarrow z = - 3\overrightarrow b - 2\overrightarrow c \). Chọn khẳng định đúng?
-
A.
Hai vecto \(\overrightarrow y ,\overrightarrow z \) cùng phương
-
B.
Hai vecto \(\overrightarrow x ,\overrightarrow y \) cùng phương
-
C.
Hai vecto \(\overrightarrow x ,\overrightarrow z \) cùng phương
-
D.
Ba vecto \(\overrightarrow x ,\overrightarrow y ,\overrightarrow z \) đồng phẳng.
Sử dụng lí thuyết hai vecto cùng phương. \(\overrightarrow x \) cùng phương \(\overrightarrow y \) khi và chỉ khi \(\overrightarrow x = k\overrightarrow y \) với \(k \ne 0\).
Nhận thấy: \(\overrightarrow y = - 4\overrightarrow a + 2\overrightarrow b = - 2\left( {2\overrightarrow a + \overrightarrow b } \right) = - 2\overrightarrow x \) nên hai vecto \(\overrightarrow x ,\overrightarrow y \) cùng phương.
Đáp án : B