Cho ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Trong các mệnh đề sau, mệnh đề nào sai?
-
A.
Nếu \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng thì từ \(m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \) ta suy ra m = n = p = 0
-
B.
Nếu có \(m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \), trong đó \({m^2} + {n^2} + {p^2} > 0\) thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
-
C.
Với ba số thực m, n, p thỏa mãn \(m + n + p \ne 0\) ta có \(m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \) thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
-
D.
Nếu giá của \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng quy thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
Dựa vào lý thuyết vecto cùng phương, vecto đồng phẳng.
Câu D sai. Ví dụ phản chứng: 3 cạnh của hình chóp tam giác đồng quy tại 1 đỉnh nhưng chúng không đồng phẳng.
Đáp án : D