Cho biết 3x - 1^2; + 2x + 3^2; + 111 + x1 - X = ax + b. Khi đó — Không quảng cáo

Cho biết \({\left( {3x - 1} \right)^2}\ + 2{\left( {x + 3} \right)^2}\ + 11\left( {1 + x} \right)\left( {1 - X} \right) = ax + b\) Khi đó


Đề bài

Cho biết \({\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right) = ax + b\) . Khi đó

  • A.
    \(a = 30; b = 6\) .
  • B.
    \(a = - 6; b = - 30\) .
  • C.
    \(a = 6; b = 30\) .
  • D.
    \(a = - 30; b = - 6\) .
Phương pháp giải
Sử dụng các hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\) ,\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) ,\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) để rút gọn 2 biểu thức đã cho.
Ta có

\(\begin{array}{l} {\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right)\\\begin{array}{*{20}{l}}{ = {{\left( {3x} \right)}^2}\;-2.3x.1 + {1^2}\; + 2\left( {{x^2}\; + 6x + 9} \right) + 11\left( {1-{x^2}} \right)}\\{ = 9{x^2}\;-6x + 1 + 2{x^2}\; + 12x + 18 + 11-11{x^2}\;}\\\begin{array}{l} = \left( {9{x^2}\; + 2{x^2}\;-11{x^2}} \right) + \left( { - 6x + 12x} \right){{ + }}\left( {1 + 18 + 11} \right)\\ = 6x + 30\end{array}\end{array}\end{array}\)

\( \Rightarrow a = 6; b = 30\)

Đáp án : C