Cho biết Q = 2x - 1^3; - 8xx + 1x - 1 + 2x6x - 5 = ax - B,,a,,b — Không quảng cáo

Cho biết \(Q = {\left( {2x - {\rm{ 1}}} \right)^3}\ - {\rm{ 8}}x\left( {x + 1} \right)\left( {x - 1} \right) + {\rm{ 2}}x\left( {6x - 5} \right) = ax - B\,\,\left( {a,\,b \in \mathbb{Z}}


Đề bài

Cho biết \(Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right) = ax - b\,\,\left( {a,\,b \in \mathbb{Z}} \right)\). Khi đó

  • A.
    \(a =  - 4;\,b = 1\).
  • B.
    \(a = 4;\,b =  - 1\).
  • C.
    \(a = 4;\,b = 1\).
  • D.
    \(a =  - 4;\,b =  - 1\).
Phương pháp giải
Sử dụng các hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\),\({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)và phép nhân đơn thức với đa thức  để rút gọn biểu thức đã cho.

Ta có

\(\begin{array}{l}Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right)\\\,\,\,\,\,\,\, = 8{x^3} - 12{x^2} + 6x - 1 - 8x\left( {{x^2} - 1} \right) + 12{x^2} - 10x\\\,\,\,\,\,\,\, = 8{x^3} - 12{x^2} + 6x - 1 - 8{x^3} + 8x + 12{x^2} - 10x\\\,\,\,\,\,\,\, = 4x - 1\\ \Rightarrow a = 4;\,\,b = 1\end{array}\)

Đáp án : C