Đề bài
Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là
-
A.
\(\;1001\) .
-
B.
\(\;1\) .
-
C.
\(\; - 34\) .
-
D.
\(\;20\) .
Phương pháp giải
Sử dụng hai hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) ,\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) và phép nhân đơn thức với đa thức rồi thu gọn đa thức.
Ta có
\(\begin{array}{l}\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\\ \begin{array}{*{20}{l}}{ = 2\left( {{x^2}\;-2x + 1} \right)-4\left( {9 + 6x + {x^2}} \right) + 2{x^2}\; + 28x}\\{ = 2{x^2}\;-4x + 2-36-24x-4{x^2}\; + 2{x^2}\; + 28x}\\{ = \left( {2{x^2}\; + 2{x^2}\;-4{x^2}} \right) + \left( { - 4x-24x + 28x} \right) + 2-36}\\{ = - 34}\end{array}\end{array}\)
Đáp án : C