Cho biểu thức x^2 + ;4x; + ;4/x^3 + ;2x^2 - 4x - 8 x khác — Không quảng cáo

Cho biểu thức \(\frac{{{x^2} + \ 4x\ + \ 4}}{{{x^3} + \ 2{x^2} - 4x - 8}}\) (x \( \ne \) \( \pm \) 2) a) Rút gọn biểu thức


Đề bài

Cho biểu thức \(\frac{{{x^2} + \;4x\; + \;4}}{{{x^3} + \;2{x^2} - 4x - 8}}\) (x \( \ne \) \( \pm \) 2)

a) Rút gọn biểu thức.

b) Tìm x \( \in \) Z để A là số nguyên.

Phương pháp giải

a) Sử dụng các phương pháp phân tích đa thức thành nhân tử để rút gọn biểu thức.

b) Để A là số nguyên thì mẫu thức phải là ước của tử thức.

a) Ta có:

\(\begin{array}{l}\frac{{{x^2} + \;4x\; + \;4}}{{{x^3} + \;2{x^2} - 4x - 8}}\\ = \frac{{{{\left( {x + 2} \right)}^2}}}{{{x^2}\left( {x + 2} \right) - 4\left( {x + 2} \right)}}\\ = \frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {{x^2} - 4} \right)\left( {x + 2} \right)}}\\ = \frac{{x + 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{1}{{x - 2}}\end{array}\)

b) Để A là số nguyên thì \(\frac{1}{{x - 2}} \in \mathbb{Z}\) thì \(x - 2 \in \) Ư(1) \( \Rightarrow x - 2 \in \left\{ { \pm 1} \right\}\).

Ta có: x – 2 = 1 \( \Rightarrow \) x = 3 (thỏa mãn điều kiện)

x – 2 = -1 \( \Rightarrow \) x = 1 (thỏa mãn điều kiện)

Vậy A là số nguyên khi \(x \in \left\{ {1;3} \right\}\).