Cho các điểm \({\rm{A}}\left( { - 3;8} \right),{\rm{B}}\left( { - 2; - 5} \right),{\rm{C}}\left( {1;0} \right)\) và \({\rm{D}}\left( {\frac{1}{2};\frac{3}{4}} \right)\), điểm thuộc đồ thị của hàm số \(y = {x^2} - 1\) là:
-
A.
\(A\left( { - 3;8} \right)\)
-
B.
\(B\left( { - 2; - 5} \right)\)
-
C.
\(C\left( {0;1} \right)\)
-
D.
\({\rm{D}}\left( {\frac{1}{2};\frac{3}{4}} \right)\)
Thay tọa độ của mỗi điểm vào đồ thị hàm số, xem thỏa mãn hay không.
Thay tọa độ điểm \(A\left( { - 3;8} \right)\) vào \({\rm{y}} = {{\rm{x}}^2} - 1\) ta được: \(8 = {( - 3)^2} - 1 = 8\) (luôn đúng)
Thay tọa độ điểm \(B\left( { - 2; - 5} \right)\) vào \({\rm{y}} = {{\rm{x}}^2} - 1\) ta được: \( - 5 = {( - 2)^2} - 1 = 3\) (vô lí)
Thay tọa độ điểm \(C\left( {0;1} \right)\) vào \({\rm{y}} = {{\rm{x}}^2} - 1\) ta được: \(1 = {0^2} - 1 = - 1\) (vô lí))
Thay tọa độ điểm \({\rm{D}}\left( {\frac{1}{2};\frac{3}{4}} \right)\) vào \({\rm{y}} = {{\rm{x}}^2} - 1\) ta được: \(\frac{3}{4} = {\left( {\frac{1}{2}} \right)^2} - 1 = \frac{1}{4} - 1 = \frac{{ - 3}}{4}\) (vô lí)
Đáp án A.
Đáp án : A