Đề bài
Cho các số thực \(a,b,\alpha \left( {a > 0;b > 0} \right)\). Mệnh đề nào sau đây đúng?
-
A.
\({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)
-
B.
\({\left( {a - b} \right)^\alpha } = {a^\alpha } - {b^\alpha }\)
-
C.
\({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^{ - \alpha }}}}\)
-
D.
\({\left( {a + b} \right)^\alpha } = {a^\alpha } + {b^\alpha }\)
Phương pháp giải
Sử dụng công thức tính lũy thừa
\({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)
\({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)
Đáp án A.
Đáp án : A