Cho cấp số nhân un có số hạng đầu u1 và công bội q. Số hạng — Không quảng cáo

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q Số hạng tổng quát \({u_n}\) được xác định theo công thức


Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q. Số hạng tổng quát \({u_n}\) được xác định theo công thức:

  • A.
    \({u_n} = {u_1} + \left( {n - 1} \right)q\) với \(n \ge 2\).
  • B.
    \({u_n} = {u_1} + nq\) với \(n \ge 2\).
  • C.
    \({u_n} = {u_1}.{q^n}\) với \(n \ge 2\).
  • D.
    \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\).
Phương pháp giải

Sử dụng kiến thức về số hạng tổng quát của cấp số nhân: Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q. Số hạng tổng quát \({u_n}\) được xác định theo công thức: \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\).

Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q. Số hạng tổng quát \({u_n}\) được xác định theo công thức: \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\).

Đáp án : D