Cho cos alpha = - 1/4 với pi — Không quảng cáo

Cho \(\cos \alpha = - \frac{1}{4}\) với \(\pi


Đề bài

Cho \(\cos \alpha  =  - \frac{1}{4}\) với \(\pi  < \alpha  < \frac{{3\pi }}{2}\). Giá trị của \(\sin \alpha \) là?

  • A.

    \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\)

  • B.

    \(\sin \alpha  =  - \frac{{\sqrt {15} }}{4}\)

  • C.

    \(\sin \alpha  = \frac{{15}}{{16}}\)

  • D.

    \(\sin \alpha  =  - \frac{{15}}{{16}}\)

Phương pháp giải

Áp dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và sử dụng đường tròn lượng giác để xét dấu.

Ta có: \({\sin ^2}\alpha  = 1 - {\cos ^2}\alpha  = 1 - {\left( {\frac{1}{4}} \right)^2} = \frac{{15}}{{16}}\), suy ra \(\sin \alpha  =  \pm \frac{{\sqrt {15} }}{4}\).

Vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\) nên điểm cuối của cung \(\alpha \) thuộc cung phần tư thứ III, do đó \(\sin \alpha  < 0\).

Vậy \(\sin \alpha  =  - \frac{{\sqrt {15} }}{4}\).

Đáp án : B