Cho đường thẳng d: Y = - 3x + 2. Gọi A, B lần lượt là giao — Không quảng cáo

Cho đường thẳng d y = - 3x + 2 Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung Diện tích tam giác OAB


Đề bài

Cho đường thẳng d : y = -3x + 2. Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Diện tích tam giác OAB là :

  • A.
    \(\frac{4}{3}\).
  • B.
    \(\frac{{ - 2}}{3}\).
  • C.
    \(\frac{3}{2}\).
  • D.
    \(\frac{2}{3}\).
Phương pháp giải

Xác định tọa độ của điểm A, B. Sử dụng công thức tính diện tích tam giác.

Giao điểm của đường thẳng d với trục hoành là: 0 = -3x + 2 hay x = \(\frac{2}{3}\) => \(A\left( {\frac{2}{3};0} \right)\).

Giao điểm của đường thẳng d với trục tung là: y = -3.0 + 2 hay y = 2 => \(B\left( {0;2} \right)\).

Suy ra \(\left| {OA} \right| = \left| {\frac{2}{3}} \right| = \frac{2}{3};\left| {OB} \right| = \left| 2 \right| = 2\).

Vì tam giác OAB vuông tại O nên diện tích tam giác OAB là:

\({S_{\Delta ABC}} = \frac{1}{2}.\frac{2}{3}.2 = \frac{2}{3}\)(đvdt).

Đáp án : D