Cho đường thẳng d1: Y = ax + b song song với đường thẳng — Không quảng cáo

Cho đường thẳng \(\left( {{d_1}} \right) y = ax + b\) song song với đường thẳng \(\left( {{d_2}} \right) y = 2x + 2019\) và cắt trục tung tại điểm


Đề bài

Cho đường thẳng \(\left( {{d_1}} \right):y = ax + b\) song song với đường thẳng \(\left( {{d_2}} \right):y = 2x + 2019\) và cắt trục tung tại điểm \(A\left( {0; - 2} \right)\). Tính giá trị của biểu thức \({a^2} + {b^3}\)?

Phương pháp giải

Dựa vào kiến thức về vị trí tương đối của hai đường thẳng.

Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\).

Theo đề bài ta có:

\({d_1}//{d_2} \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 2019\end{array} \right. \Rightarrow y = 2x + b\).

Vì \({d_1}\) cắt trục tung tại \(A\left( {0; - 2} \right)\) nên -2 = 2.0 + b \( \Rightarrow \) b = -2 (TM)

\( \Rightarrow {a^2} + {b^3} = {2^2} + {\left( { - 2} \right)^3} = 4 - 8 =  - 4\).

Vậy \({a^2} - {b^3} =  - 4\).