Cho góc nhọn alpha thỏa mãn 0 độ — Không quảng cáo

Đề bài Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống Cho góc nhọn \(\alpha \) thỏa mãn \(0^\circ


Đề bài
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Cho góc nhọn \(\alpha \) thỏa mãn \(0^\circ  < \alpha  < 50^\circ \).

Rút gọn biểu thức \(A = \sin \left( {\alpha  + 40^\circ } \right) - \sin \left( {\alpha  + 30^\circ } \right) - \cos \left( {50^\circ  - \alpha } \right) + \cos \left( {60^\circ  - \alpha } \right)\) về biểu thức chỉ chứa tỉ số lượng giác sin của một góc.

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

Sử dụng kiến thức về tỉ số lượng giác của hai góc phụ nhau: \(\cos \alpha  = \sin \left( {90^\circ  - \alpha } \right)\)

Ta có: \(A = \sin \left( {\alpha  + 40^\circ } \right) - \sin \left( {\alpha  + 30^\circ } \right) - \cos \left( {50^\circ  - \alpha } \right) + \cos \left( {60^\circ  - \alpha } \right)\)

\(\begin{array}{l} = \sin \left( {\alpha  + 40^\circ } \right) - \sin \left( {\alpha  + 30^\circ } \right) - \sin \left[ {90^\circ  - \left( {50^\circ  - \alpha } \right)} \right] + \cos \left[ {90^\circ  - \left( {60^\circ  - \alpha } \right)} \right]\\ = \sin \left( {\alpha  + 40^\circ } \right) - \sin \left( {\alpha  + 30^\circ } \right) - \sin \left( {40^\circ  + \alpha } \right) + \sin \left( {30^\circ  + \alpha } \right)\\ = \left[ {\sin \left( {\alpha  + 40^\circ } \right) - \sin \left( {40^\circ  + \alpha } \right)} \right] + \left[ { - \sin \left( {\alpha  + 30^\circ } \right) + \sin \left( {30^\circ  + \alpha } \right)} \right]\\ = 0 + 0 = 0\end{array}\)

Đáp án: 0