Cho góc nhọn \(xOy.\) Trên tia \(Ox\) lấy hai điểm \(A,C,\) trên tia \(Oy\) lấy hai điểm \(B,D\) sao cho \(OA = OB,OC = OD\) (\(A\) nằm giữa \(O\) và \(C,\)\(B\) nằm giữa \(O\) và \(D\) ). So sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)
-
A.
\(\widehat {CBD} = \widehat {CAD}\)
-
B.
\(\widehat {CBD} < \widehat {CAD}\)
-
C.
\(\widehat {CBD} > \widehat {CAD}\)
-
D.
\(2.\widehat {CBD} = \widehat {CAD}\)
+ Sử dụng tính chất hai tam giác bằng nhau ở ý trước suy ra hai góc tương ứng bằng nhau
+ Sau đó sử dụng tính chất hai góc kề bù hoặc góc ngoài để so sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)
Xét tam giác \(OAD\) và tam giác \(OBC\) có
\(OA = OB,\)
\(\widehat O\)chung,
\(OC = OD\)
\( \Rightarrow \)\(\Delta OAD = \Delta OBC\) ( c.g.c)
\( \Rightarrow \)\(\widehat {OBC} = \widehat {OAD}\) (hai góc tương ứng bằng nhau)
Lại có \(\widehat {OBC} + \widehat {CBD} = 180^\circ ;\,\widehat {OAD} + \widehat {DAC} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {CBD} = 180^\circ - \widehat {OBC}\) và \(\widehat {CAD} = 180^\circ - \widehat {OAD}\) mà \(\widehat {OBC} = \widehat {OAD}\) (cmt)
\( \Rightarrow \) \(\widehat {CBD} = \widehat {CAD}.\)
Đáp án : A