Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: Y = m — Không quảng cáo

Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d \(y = \left( {m - 2} \right)x - M\) và \(d' y = - 2x - 2mx


Đề bài

Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y =  - 2x - 2mx + 3.\) Với giá trị nào của m thì d cắt d’

  • A.
    \(m \ne  - 1\)
  • B.
    \(m \ne 0\)
  • C.
    \(m \ne 1\)
  • D.
    Cả A, B, C đều sai.
Phương pháp giải
Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.

d là hàm số bậc nhất khi \(m \ne 2\)

\(d':y =  - 2x - 2mx + 3 = \left( { - 2 - 2m} \right)x + 3\)

d’ là hàm số bậc nhất khi \(m \ne  - 1\)

Hai đường thẳng thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = \left( { - 2 - 2m} \right)x + 3\) cắt nhau thì:

\(m - 2 \ne  - 2 - 2m\)

\(3m \ne 0\)

\(m \ne 0\) (thỏa mãn)

Đáp án : B