Đề bài
Cho hai đồ thị hàm số bậc nhất là hai đường thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = - 2x - 2mx + 3.\) Với giá trị nào của m thì d cắt d’
-
A.
\(m \ne - 1\)
-
B.
\(m \ne 0\)
-
C.
\(m \ne 1\)
-
D.
Cả A, B, C đều sai.
Phương pháp giải
Sử dụng nhận biết về hai đường thẳng cắt nhau: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) cắt nhau khi \(a \ne a'\) và ngược lại.
d là hàm số bậc nhất khi \(m \ne 2\)
\(d':y = - 2x - 2mx + 3 = \left( { - 2 - 2m} \right)x + 3\)
d’ là hàm số bậc nhất khi \(m \ne - 1\)
Hai đường thẳng thẳng d: \(y = \left( {m - 2} \right)x - m\) và \(d':y = \left( { - 2 - 2m} \right)x + 3\) cắt nhau thì:
\(m - 2 \ne - 2 - 2m\)
\(3m \ne 0\)
\(m \ne 0\) (thỏa mãn)
Đáp án : B