Cho hai đường thẳng d1: Y = x - 1 và d2: Y = 3 - 4x. Tung độ — Không quảng cáo

Cho hai đường thẳng \({d_1} y = x - 1\) và \({d_2} y = 3 - 4x \) Tung độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là


Đề bài

Cho hai đường thẳng \({d_1}:y = x - 1\) và \({d_2}:y = 3 - 4x.\) Tung độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là:

  • A.
    \( - 5\)
  • B.
    \(5\)
  • C.
    \(\frac{1}{5}\)
  • D.
    \(\frac{{ - 1}}{5}\)
Phương pháp giải
Tìm tọa độ giao điểm của hai đường thẳng theo các bước:

Bước 1: Xét phương trình hoành độ giao điểm của hai đường thẳng đó để tìm hoành độ giao điểm

Bước 2: Thay hoành độ giao điểm vừa tìm được vào một trong hai hàm số ta tìm được tung độ giao điểm.

Xét phương trình hoành độ giao điểm của \({d_1}\) và \({d_2}\):

\(x - 1 = 3 - 4x\)

\(5x = 4\)

\(x = \frac{4}{5}\)

Với \(x = \frac{4}{5}\) thì \(y = \frac{4}{5} - 1 = \frac{{ - 1}}{5}\)

Vậy tung độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là \(\frac{{ - 1}}{5}\)

Đáp án : D