Cho hai hàm số: F x = - 6x^2 + 12x - 7,g x = 3x^2 + 6x + — Không quảng cáo

Cho hai hàm số \(f\left( x \right) = - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)Khẳng định nào sau đây là đúng


Đề bài

Cho hai hàm số: \(f\left( x \right) =  - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)

Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( x \right) > 0,g\left( x \right) > 0\) với mọi x
  • B.
    \(f\left( x \right) < 0,g\left( x \right) > 0\) với mọi x
  • C.
    \(f\left( x \right) = 0,g\left( x \right) > 0\) với mọi x
  • D.
    \(f\left( x \right) > 0,g\left( x \right) = 0\) với mọi x
Phương pháp giải

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Ta có: \(f\left( x \right) =  - 6{x^2} + 12x - 7 =  - 6{x^2} + 12x - 6 - 1 =  - 6\left( {{x^2} - 2x + 1} \right) - 1 =  - 6{\left( {x - 1} \right)^2} - 1 < 0\) với mọi x.

\(g\left( x \right) = 3{x^2} + 6x + 4 = 3{x^2} + 6x + 3 + 1 = 3\left( {{x^2} + 2x + 1} \right) + 1 = 3{\left( {x + 1} \right)^2} + 1 > 0\) với mọi x.

Đáp án : B