Cho hai số thực a và b thỏa mãn điều kiện sin a + b - 2cos — Không quảng cáo

Cho hai số thực a và b thỏa mãn điều kiện \(\sin \left( {a + b} \right) - 2\cos \left( {a - B} \right) = 0\) Tính giá trị của


Đề bài

Cho hai số thực a và b thỏa mãn điều kiện \(\sin \left( {a + b} \right) - 2\cos \left( {a - b} \right) = 0\). Tính giá trị của biểu thức \(A = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}}\).

Phương pháp giải

Sử dụng công thức: \(\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2};\sin a\sin b = \frac{1}{2}\left[ {\cos \left( {a - b} \right) - \cos \left( {a + b} \right)} \right]\)

\(A = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}} = \frac{{4 - \left( {\sin 2a + \sin 2b} \right)}}{{\left( {2 - \sin 2a} \right)\left( {2 - \sin 2b} \right)}} = \frac{{4 - \left( {\sin 2a + \sin 2b} \right)}}{{4 - 2\left( {\sin 2a + \sin 2b} \right) + \sin 2a.\sin 2b}}\)

Vì \(\sin \left( {a + b} \right) - 2\cos \left( {a - b} \right) = 0 \Rightarrow \sin \left( {a + b} \right) = 2\cos \left( {a - b} \right)\)

Ta có: \(4 - \left( {\sin 2a + \sin 2b} \right) = 4 - 2\sin \left( {a + b} \right)\cos \left( {a - b} \right) = 4 - 4{\cos ^2}\left( {a - b} \right) = 4{\sin ^2}\left( {a - b} \right)\)

Lại có: \(4 - 2\left( {\sin 2a + \sin 2b} \right) + \sin 2a.\sin 2b\)

\( = 4 - 4\sin \left( {a + b} \right)\cos \left( {a - b} \right) + \frac{1}{2}\left[ {\cos \left( {2a - 2b} \right) - \cos \left( {2a + 2b} \right)} \right]\)

\( = 4 - 8{\cos ^2}\left( {a - b} \right) + \frac{1}{2}\left[ {2{{\cos }^2}\left( {a - b} \right) - 1 - 1 + 2{{\sin }^2}\left( {a + b} \right)} \right]\)

\( = 3 - 7{\cos ^2}\left( {a - b} \right) + {\sin ^2}\left( {a + b} \right) = 3 - 3{\cos ^2}\left( {a - b} \right) = 3{\sin ^2}\left( {a - b} \right)\)

Vậy \(A = \frac{{4{{\sin }^2}\left( {a - b} \right)}}{{3{{\sin }^2}\left( {a - b} \right)}} = \frac{4}{3}\)