Cho hai số thực dương a, b với a khác 1. Số thực c để… được — Không quảng cáo

Cho hai số thực dương a, b với a khác 1 Số thực c để… được gọi là lôgarit cơ số a của b và kí hiệu là \({\log _a}b\)


Đề bài

Cho hai số thực dương a, b với a khác 1. Số thực c để… được gọi là lôgarit cơ số a của b và kí hiệu là \({\log _a}b\).

Biểu thức phù hợp để điền vào “…” được câu đúng là:

  • A.
    \({a^c} = b\).
  • B.
    \({a^b} = c\).
  • C.
    \({b^a} = c\).
  • D.
    \({c^a} = b\).
Phương pháp giải

Cho hai số thực dương a, b với a khác 1. Số thực c để \({a^c} = b\) được gọi là lôgarit cơ số a của b và kí hiệu \({\log _a}b\).

Cho hai số thực dương a, b với a khác 1. Số thực c để \({a^c} = b\) được gọi là lôgarit cơ số a của b và kí hiệu \({\log _a}b\).

Đáp án A.

Đáp án : A