Đề bài
Cho hàm số bậc nhất\(y = \left( {2m - 1} \right)x + {m^2} + 2\left( 1 \right).\) Biết điểm A thuộc trục hoành có hoành độ bằng 1 thuộc hàm số trên. Khi đó,
-
A.
\(m = 2\)
-
B.
\(m = 0\)
-
C.
\(m = 1\)
-
D.
\(m = - 1\)
Phương pháp giải
+ Sử dụng định nghĩa hàm số bậc nhất: Hàm số bậc nhất có dạng \(y = ax + b\), trong đó a, b là các số cho trước và a khác 0.
+ Sử dụng giá trị của hàm số bậc nhất.
Để (1) là hàm số bậc nhất thì \(m \ne \frac{1}{2}\)
Vì điểm A thuộc trục hoành và có hoành độ bằng 1 nên \(x = 1;y = 0\)
Do đó, \(0 = \left( {2m - 1} \right).1 + {m^2} + 2 = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\)
\(m + 1 = 0\)
\(m = - 1\) (thỏa mãn)
Đáp án : D