Cho hàm số f x = 2^x. Gọi M và m lần lượt là giá trị lớn — Không quảng cáo

Cho hàm số \(f\left( x \right) = {2^x}\) Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn \(\left[ {


Đề bài

Cho hàm số \(f\left( x \right) = {2^x}\). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn \(\left[ { - 2;3} \right]\). Khi đó:

  • A.
    \(M.m = 2\).
  • B.
    \(M.m = \frac{1}{2}\)
  • C.
    \(M.m = 4\).
  • D.
    \(M.m = \frac{1}{4}\).
Phương pháp giải

Cho hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\):

+ Nếu \(a > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).

+ Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\mathbb{R}\).

Vì \(2 > 1\) nên hàm số \(f\left( x \right) = {2^x}\) đồng biến trên \(\mathbb{R}\).

Do đó, \(\mathop {\max }\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right) = {2^3} = 8;\mathop {\min }\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( { - 2} \right) = {2^{ - 2}} = \frac{1}{4}\)

Suy ra: \(M = 8,m = \frac{1}{4} \Rightarrow Mm = 8.\frac{1}{4} = 2\).

Đáp án : A