Đề bài
Cho hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^3} - x}}\). Kết luận nào sau đây là đúng?
-
A.
Hàm số liên tục tại \(x = - 1\) .
-
B.
Hàm số liên tục tại \(x = 0\).
-
C.
Hàm số liên tục tại \(x = 1\).
-
D.
Hàm số liên tục tại \(x = \frac{1}{4}\).
Phương pháp giải
Sử dụng kiến thức về tính liên tục của hàm số sơ cấp cơ bản: Hàm phân thức hữu tỉ (thương là hai đa thức) liên tục trên tập xác định của chúng.
Hàm số f(x) xác định khi \({x^3} - x \ne 0 \Leftrightarrow x\left( {{x^2} - 1} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne \pm 1\end{array} \right.\)
Do đó, hàm số f(x) liên tục trên các khoảng \(\left( { - \infty ; - 1} \right),\left( { - 1;0} \right),\left( {0;1} \right),\left( {1; + \infty } \right)\)
Vậy hàm số liên tục tại \(x = \frac{1}{4}\)
Đáp án : D