Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với \(a,b,c,d \in R\);\(a > 0\) và \(\left\{ \begin{array}{l}d > 2021\\a + b + c + d - 2021 < 0\end{array} \right.\). Hỏi phương trình \(f\left( x \right) - 2021 = 0\) có mấy nghiệm phân biệt?
-
A.
0
-
B.
3
-
C.
2
-
D.
1
Sử dụng ứng dụng tính liên tục của hàm số trong chứng minh phương trình có nghiệm
\(\begin{array}{l}g(x) = f(x) - 2021 = a{x^3} + b{x^2} + cx + d - 2021\\g(0) = d - 2021 > 0\\g(1) = a + b + c + d - 2021 < 0\end{array}\)
Ta có: \(\mathop {\lim }\limits_{x \to \infty } \left( {a{x^3} + b{x^2} + cx + d - 2021} \right) = + \infty \)
Suy ra, tồn tại giá trị \({x_1} > 1\) sao cho \(g\left( {{x_1}} \right) > 0\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left( {a{x^3} + b{x^2} + cx + d - 2021} \right) = - \infty \)
Suy ra, tồn tại \({x_2} < 0\) sao cho \(g\left( {{x_2}} \right) > 0\)
Ta có: \(\left\{ \begin{array}{l}g\left( {{x_1}} \right).g(1) < 0\\g(0).g(1) < 0\\g\left( {{x_2}} \right).g(0) < 0\end{array} \right.\)
Suy ra, \(g\left( x \right) = 0\) có ba nghiệm phân biệt
Đáp án B.
Đáp án : B