Cho hàm số \(f\left( x \right) = {x^3} + 3x\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1; - 4} \right)\)có phương trình là:
-
A.
\(y = - 6x + 8\).
-
B.
\(y = 6x - 8\).
-
C.
\(y = 6x + 2\).
-
D.
\(y = - 6x - 2\).
Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\left( {{x_0},f\left( {{x_0}} \right)} \right)\).
Tiếp tuyến \({M_o}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).
Ta có: \(f'\left( x \right) = 3{x^2} + 3\) nên \(f'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} + 3 = 6\)
Do đó, tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1; - 4} \right)\) có phương trình là: \(y + 4 = 6\left( {x + 1} \right) \Rightarrow y = 6x + 2\)
Đáp án C.
Đáp án : C