Cho hàm số: \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\quad khi\;x \ne 1\\m\quad \quad \quad khi\;x = 1\end{array} \right.\) . Để f(x) liên tục tại điểm x 0 = 1 thì m bằng:
-
A.
-1
-
B.
1
-
C.
2
-
D.
0
Điều kiện để hàm số liên tục tại \(x = {x_0}\):
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\)
Hàm số đã cho xác định trên R
Ta có:
\(\begin{array}{l}f(1) = m\\\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{x + 1}} = \frac{1}{2}\end{array}\)
Hàm số liên tục tại \(x = 1\) khi \(f(1) = \mathop {\lim }\limits_{x \to 1} f(x) \Leftrightarrow m = \frac{1}{2}\)
Vậy khi m = 2 thì hàm số liên tục tại \(x = 1\)
Đáp án C.
Đáp án : C