Đề bài
Cho hàm số f(x) có đạo hàm \(f'(x) = x{(x + 1)^2}{(x - 2)^3}\), \(\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số là
-
A.
1
-
B.
2
-
C.
3
-
D.
0
Phương pháp giải
\({x_0}\) là điểm cực trị của hàm số \(f(x)\) nếu \(f'({x_0}) = 0\) và \(f'({x_0})\) đổi dấu qua \({x_0}\).
\(f'(x) = x{(x + 1)^2}{(x - 2)^3} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 1}\\{x = 2}\end{array}} \right.\).
\(f'(x)\) đổi dấu qua \(x = 0\), \(x = 2\).
Vậy số điểm cực trị của hàm số là 2.
Đáp án : B