Cho hàm số fx có đạo hàm f'x = xx + 1^2x - 2^3, forall — Không quảng cáo

Cho hàm số f(x) có đạo hàm \(f'(x) = x{(x + 1)^2}{(x - 2)^3}\), \(\forall x \in \mathbb{R}\) Số điểm cực trị của hàm số là


Đề bài

Cho hàm số f(x) có đạo hàm \(f'(x) = x{(x + 1)^2}{(x - 2)^3}\), \(\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số là

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    0

Phương pháp giải

\({x_0}\) là điểm cực trị của hàm số \(f(x)\) nếu \(f'({x_0}) = 0\) và \(f'({x_0})\) đổi dấu qua \({x_0}\).

\(f'(x) = x{(x + 1)^2}{(x - 2)^3} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x =  - 1}\\{x = 2}\end{array}} \right.\).

\(f'(x)\) đổi dấu qua \(x = 0\), \(x = 2\).

Vậy số điểm cực trị của hàm số là 2.

Đáp án : B