Đề bài
: Cho hàm số y=(a2−4)x2+(b−3a)(b+2a)x−2 là hàm số bậc nhất khi:
-
A.
a=2;b≠{6;−4}
-
B.
a=−2;b≠{−6;4}
-
C.
a=2;b=−2
-
D.
Cả A, B, C đều đúng
Phương pháp giải
Sử dụng định nghĩa hàm số bậc nhất: Hàm số bậc nhất có dạng y=ax+b, trong đó a, b là các số cho trước và a khác 0.
Hàm số y=(a2−4)x2+(b−3a)(b+2a)x−2 là hàm số bậc nhất khi a2−4=0 và (b−3a)(b+2a)≠0
+) a2−4=0
a2=4
a=±2
+) (b−3a)(b+2a)≠0
{b≠3ab≠−2a
Với a=2 thì {b≠6b≠−4
Với a=−2 thì {b≠−6b≠4
Đáp án : D