Cho hàm số y = f x có đạo hàm trên tập số thực. Tìm hệ thức — Không quảng cáo

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực Tìm hệ thức đúng


Đề bài

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực. Tìm hệ thức đúng

  • A.
    \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)
  • B.
    \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{x - 1}}\)
  • C.
    \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{x}\)
  • D.
    \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( 1 \right)}}{{x - 1}}\)
Phương pháp giải

Sử dụng định nghĩa về đạo hàm tại một điểm.

Cho hàm số y = f(x) xác định trên khoảng (a; b) và x 0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn) thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x 0 và kí hiệu là f’(x 0 ) (hoặc y’(x 0 )), tức là: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f({x_0})}}{{x - {x_0}}}\)

\(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

Đáp án A.

Đáp án : A