Cho hàm số: Y = ln [ m^2 + 4m - 5x^2 - 2m - 1x + 2 ]. A Với — Không quảng cáo

Cho hàm số \(y = \ln \left[ {\left( {{m^2} + 4m - 5} \right){x^2} - 2\left( {m - 1} \right)x + 2} \right]\) a) Với \(m = 1\), hãy tìm


Đề bài

Cho hàm số: \(y = \ln \left[ {\left( {{m^2} + 4m - 5} \right){x^2} - 2\left( {m - 1} \right)x + 2} \right]\).

a) Với \(m = 1\), hãy tìm tập xác định của hàm số trên.

b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định với mọi giá trị thực của x.

Phương pháp giải

Hàm số \(y = \ln u\left( x \right)\) xác định khi \(u\left( x \right) > 0\).

a) Với \(m = 1\) ta có: \(y = \ln 2 > 0\).

Vậy với \(m = 1\) thì tập xác định của hàm số là: \(D = \left( { - \infty ; + \infty } \right)\).

b) Hàm số \(y = \ln \left[ {\left( {{m^2} + 4m - 5} \right){x^2} - 2\left( {m - 1} \right)x + 2} \right]\) xác định với mọi giá trị thực của x khi và chỉ khi \(f\left( x \right) = \left( {{m^2} + 4m - 5} \right){x^2} - 2\left( {m - 1} \right)x + 2 > 0\) với mọi \(x \in \mathbb{R}\)

Trường hợp 1: \({m^2} + 4m - 5 = 0 \Leftrightarrow \left( {m + 5} \right)\left( {m - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m =  - 5\\m = 1\end{array} \right.\)

Với \(m = 1\) ta có: \(f\left( x \right) = 2 > 0\). Do đó, f(x) xác định với mọi giá trị thực của x. Do đó, \(m = 1\) thỏa mãn.

Với \(m =  - 5\) ta có: \(f\left( x \right) = 12x + 2 > 0 \Leftrightarrow x > \frac{{ - 1}}{6}\). Do đó, f(x) không xác định với mọi giá trị thực của x. Do đó, \(m =  - 5\) không thỏa mãn.

Trường hợp 2: Với \({m^2} + 4m - 5 \ne 0 \Leftrightarrow \left( {m + 5} \right)\left( {m - 1} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne  - 5\\m \ne 1\end{array} \right.\).

Hàm số \(f\left( x \right) = \left( {{m^2} + 4m - 5} \right){x^2} - 2\left( {m - 1} \right)x + 2 > 0\) với mọi \(x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m - 5 > 0\\\Delta ' = {\left( {m - 1} \right)^2} - 2\left( {{m^2} + 4m - 5} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 5} \right)\left( {m - 1} \right) > 0\\ - {m^2} - 10m + 11 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 5} \right)\left( {m - 1} \right) > 0\\\left( {m + 11} \right)\left( {m - 1} \right) > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m <  - 5\\m > 1\end{array} \right.\\\left[ \begin{array}{l}m <  - 11\\m > 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m <  - 11\\m > 1\end{array} \right.\)

Vậy với \(m \in \left( { - \infty ; - 11} \right) \cup \left[ {1; + \infty } \right)\) thì hàm số \(y = \ln \left[ {\left( {{m^2} + 4m - 5} \right){x^2} - 2\left( {m - 1} \right)x + 2} \right]\) có tập xác định với mọi giá trị thực của x.