Đề bài
Cho hàm số \(y = \left( {m - 1} \right)x + {m^2}\). Có bao nhiêu giá trị của m để hàm số đã cho là hàm số không là hàm số bậc nhất?
-
A.
Không có giá trị nào
-
B.
1 giá trị
-
C.
2 giá trị
-
D.
Vô số giá trị
Phương pháp giải
Sử dụng định nghĩa hàm số bậc nhất: Hàm số bậc nhất có dạng \(y = ax + b\), trong đó a, b là các số cho trước và a khác 0.
Để hàm số \(y = \left( {m - 1} \right)x + {m^2}\) là hàm số bậc nhất thì \(m - 1 \ne 0\)
\(m \ne 1\)
Do đó, hàm số \(y = \left( {m - 1} \right)x + {m^2}\) là hàm số bậc nhất khi \(m \ne 1\)
Vậy có 1 giá trị của m để hàm số \(y = \left( {m - 1} \right)x + {m^2}\) không là hàm số bậc nhất là \(m = 1\)
Đáp án : B