Đề bài
Cho hàm số \(y = \frac{{x - 1}}{{x - 2}}\), tiếp tuyến tại giao điểm của đồ thị hàm số với trục hoành có phương trình là:
-
A.
\(y = - x + 1\)
-
B.
\(y = - x + 2\)
-
C.
\(y = - 2x + 1\)
-
D.
\(y = - x - 1\)
Phương pháp giải
Phương trình tiếp tuyến tại điểm \(M({x_0},f({x_0}))\) là: \(y = f'({x_0})(x - {x_0}) + f({x_0})\)
Giao điểm của đồ thị hàm số với trục hoành là \(M(1;0)\)
\(\begin{array}{l}y' = \left( {\frac{{x - 1}}{{x - 2}}} \right)' = \frac{{ - 1}}{{{{\left( {x - 2} \right)}^2}}}\\y'(1) = - 1\end{array}\)
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là:
\(\begin{array}{l}y = f'(1)(x - 1) + 0 = - 1(x - 1) + 0\\y = - x + 1\end{array}\)
Đáp án A.
Đáp án : A