Cho hệ trục tọa độ Oxy, diện tích của hình chữ nhật giới — Không quảng cáo

Cho hệ trục tọa độ Oxy, diện tích của hình chữ nhật giới hạn bởi hai trục tọa độ và hai đường thẳng chứa tất cả các điểm có hoành


Đề bài

: Cho hệ trục tọa độ Oxy, diện tích của hình chữ nhật giới hạn bởi hai trục tọa độ và hai đường thẳng chứa tất cả các điểm có hoành độ bằng 3 và tất cả các điểm có tung độ bằng 2 là:

  • A.
    4đvdt
  • B.
    5đvdt
  • C.
    6đvdt
  • D.
    7đvdt
Phương pháp giải
Sử dụng định nghĩa tọa độ của điểm trong mặt phẳng: Cho điểm M trong mặt phẳng tọa độ Oxy, giả sử hình chiếu của điểm M lên trục hoành Ox là điểm a trên trục số Ox, hình chiếu của điểm M lên trục tung Oy là điểm b trên trục số Oy. Cặp số (a; b) được gọi là tọa độ của điểm M, a là hoành độ, b là tung độ của điểm M

+ Sử dụng khái niệm đồ thị của hàm số: Đồ thị của hàm số \(y = f\left( x \right)\) trên mặt phẳng tọa độ Oxy là tập hợp tất cả các điểm \(M\left( {x;f\left( x \right)} \right)\)

Các điểm có hoành độ bằng 3 nằm trên đường thẳng song song với trục tung và cắt trục hoành tại điểm có hoành độ bằng 3.

Các điểm có tung độ bằng 2 nằm trên đường thẳng song song với trục hoành và cắt trục tung tại điểm có tung độ bằng 2.

Do đó, ta có đồ thị hàm số:

Gọi tên các giao điểm như hình vẽ, ta được hình chữ nhật OBCA.

Do đó, diện tích hình chữ nhật OBCA là: \({S_{OBCA}} = OA.OB = 3.2 = 6\) (đvdt)

Đáp án : C