Cho hình bình hành ABCD có \(AB = a = 12,5cm,BC = b = 7,25cm.\) Đường phân giác của góc B cắt đường chéo AC tại E, đường phân giác của góc D cắt đường chéo AC tại F. Biết rằng \(FE = m = 3,45cm\) .
Chọn đáp án đúng
-
A.
\(AC \approx 12,98cm\)
-
B.
\(AC \approx 12,97cm\)
-
C.
\(AC \approx 12,88cm\)
-
D.
\(AC \approx 12,87cm\)
Vì ABCD là hình bình hành nên \(\widehat {ABC} = \widehat {ADC}.\)
Vì BE và DF lần lượt là phân giác của góc ABC và góc ADC nên \(\widehat {ADF} = \widehat {CBE}\)
Mặt khác, ta có: \(AD = CB = b,\widehat {DAF} = \widehat {BCE}\) (so le trong)
Suy ra: \(\Delta ADF = \Delta CBE\left( {g.c.g} \right)\) nên \(AF = CE\)
Đặt \(AF = CE = x\)
Xét tam giác ABC có BE là đường phân giác của góc ABC nên
\(\frac{{AB}}{{BC}} = \frac{{AE}}{{CE}} = \frac{{FA + FE}}{{CE}} \Rightarrow \frac{a}{b} = \frac{{x + m}}{x} \Rightarrow x = \frac{{mb}}{{a - b}}\)
\(AC = 2x + m = \frac{{2mb}}{{a - b}} + m = \frac{{m\left( {a + b} \right)}}{{a - b}} = \frac{{3,45\left( {12,5 + 7,25} \right)}}{{12,5 - 7,25}} \approx 12,98cm\)
Đáp án : A