Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm — Không quảng cáo

Cho hình bình hành ABCD Gọi E, F theo thứ tự là trung điểm của AD, BC Đường chéo AC cắt BE, DF theo thứ tự ở K, I Chọn


Đề bài

Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Đường chéo AC cắt BE, DF theo thứ tự ở K, I. Chọn khẳng định đúng nhất.

  • A.
    K, I lần lượt là trọng tâm ΔABD, ΔCBD
  • B.
    AK = KI = IC
  • C.
    Cả A, B đều đúng
  • D.
    Cả A, B đều sai
Phương pháp giải
Sử dụng tính chất của hình bình hành để chứng minh AK = KI = IC

Gọi O là giao điểm của AC, BD

Vì ABCD là hình bình hành nên AC, BD giao nhau tại trung điểm O mỗi đường, hay \(AO = CO = \frac{{AC}}{2}\)

Xét tam giác ABD có BE, AO là đường trung tuyến cắt nhau tại K nên K là trọng tâm ΔABD.

Suy ra \(AK = \frac{2}{3}AO = \frac{2}{3}.\frac{1}{2}AC = \frac{1}{3}AC\) (1)

Xét tam giác CBD có DF, CO là hai đường trung tuyến cắt nhau tại I nên I là trọng tâm ΔCBD.

Suy ra \(CI = \frac{2}{3}CO = \frac{2}{3}.\frac{1}{2}AC = \frac{1}{3}AC\) (2)

Lại có:

\(\begin{array}{l}AK + KI + CI = AC\\ \Rightarrow KI = AC - AK - CI\\ = AC - \frac{1}{3}AC - \frac{1}{2}AC = \frac{1}{3}AC(3)\end{array}\)

Từ (1), (2) và (3) suy ra: AK = KI = IC

Đáp án : C