Cho hình chóp \(S.ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng \((ABC)\) và \(ABC\) là tam giác đều cạnh bằng \(a.\) Biết khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\) bàng \(a\sqrt {\frac{6}{{11}}} \) . Tính thể tích khối chóp \(S.ABC\)
Sử dụng phương pháp tính góc giữa hai mặt phẳng
Gọi M là trung điểm của BC thì \(AM \bot BC\)
Dựng AH vuông góc với SM (H thuộc SM)
Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\)
Từ (1) và (2) \( \Rightarrow BC \bot \left( {SAM} \right)\)
\( \Rightarrow AH \bot BC\)
Từ (a) và (b) \( \Rightarrow AH \bot \left( {SBC} \right)\)
\( \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\)= \(a\sqrt {\frac{6}{{11}}} \)
Xét \(\Delta SAM\) ta có
\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{{{\left( {AM} \right)}^2}}} \Leftrightarrow \frac{1}{{{{\left( {a\sqrt {\frac{6}{{11}}} } \right)}^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}\)
\( \Rightarrow SA = \sqrt 2 a\)
Vậy \({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{1}{3}.\frac{{\sqrt 3 }}{4}{a^2}.\sqrt 2 a = \frac{{\sqrt 6 }}{{12}}{a^3}\)