Cho hình chóp S. ABC có cạnh bên SA vuông góc với mặt phẳng — Không quảng cáo

Cho hình chóp \(S ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng \((ABC)\) và \(ABC\) là tam giác đều cạnh bằng \(a \) Biết khoảng cách từ điểm


Đề bài

Cho hình chóp \(S.ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng \((ABC)\) và \(ABC\) là tam giác đều cạnh bằng \(a.\) Biết khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\) bàng \(a\sqrt {\frac{6}{{11}}} \) . Tính thể tích khối chóp \(S.ABC\)

Phương pháp giải

Sử dụng phương pháp tính góc giữa hai mặt phẳng

Gọi M là trung điểm của BC thì \(AM \bot BC\)

Dựng AH vuông góc với SM (H thuộc SM)

Vì \(SA \bot \left( {ABC} \right)\) nên  \(SA \bot BC\)

Từ (1) và (2) \( \Rightarrow BC \bot \left( {SAM} \right)\)

\( \Rightarrow AH \bot BC\)

Từ (a) và (b) \( \Rightarrow AH \bot \left( {SBC} \right)\)

\( \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\)= \(a\sqrt {\frac{6}{{11}}} \)

Xét \(\Delta SAM\) ta có

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{{{\left( {AM} \right)}^2}}} \Leftrightarrow \frac{1}{{{{\left( {a\sqrt {\frac{6}{{11}}} } \right)}^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}\)

\( \Rightarrow SA = \sqrt 2 a\)

Vậy \({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{1}{3}.\frac{{\sqrt 3 }}{4}{a^2}.\sqrt 2 a = \frac{{\sqrt 6 }}{{12}}{a^3}\)