Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại A, SA — Không quảng cáo

Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A, \(SA \bot \left( {ABC} \right)\) Hình chiếu vuông góc của đường thẳng SC lên mặt phẳng


Đề bài

Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại A, \(SA \bot \left( {ABC} \right)\). Hình chiếu vuông góc của đường thẳng SC lên mặt phẳng (SAB) là đường thẳng:

  • A.
    SB.
  • B.
    SA.
  • C.
    SB.
  • D.
    AH.
Phương pháp giải

Cho mặt phẳng (P). Xét một điểm M tùy ý trong không gian. Gọi d là đường thẳng đi qua điểm M và vuông góc với (P). Gọi M’ là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó, điểm M’ được gọi là hình chiếu vuông góc của điểm M lên mặt phẳng (P).

Vì \(SA \bot \left( {ABC} \right),AC \subset \left( {ABC} \right) \Rightarrow SA \bot AC\)

Tam giác ABC vuông tại A nên \(AB \bot AC\).

Mà SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB). Do đó, \(AC \bot \left( {SAB} \right)\).

Do đó, A là hình chiếu vuông góc của điểm C trên mặt phẳng (SAB).

Suy ra, hình chiếu vuông góc của đường thẳng SC lên mặt phẳng (SAB) là đường thẳng SA.

Đáp án B.

Đáp án : B